
1

Raduga

Developer Guide

Raduga 1.08.0002

2

Table of Contents

General information.. 4

About Raduga .. 5

Raduga Development Concepts .. 6

Internal Architecture ... 6

Services ... 7

Entities .. 7

Entity Types ... 8

Steps .. 8

Constants .. 8

Defining Entity Types .. 9

Creating User Values ... 18

Defining Valid Values .. 19

Adding/Updating Entity Types .. 21

Defining Steps ... 25

Defining Custom Actions ... 28

Entities .. 29

Defining Entities .. 29

Defining Entity Columns .. 32

Defining Entity Column Primary Key ... 34

Defining Column Translations ... 35

Defining Additional Values .. 36

Defining Constants .. 36

Defining Messages .. 37

Defining Services ... 39

Defining Project Approval Rules ... 40

Reports .. 42

Defining Reports ... 42

Defining Report Parameters ... 43

Defining Parameter Translations .. 46

Development Steps ... 47

Exporting and Importing Development Projects .. 48

Appendix ... 48

3

Appendix A – List of Raduga built-in variables .. 48

Appendix B – List of Raduga built-in steps .. 51

Appendix C – List of Raduga built-in customizable steps.. 53

Appendix D – List of Raduga built-in constants .. 54

For Further Information .. 57

4

General information

Copyright

Copyright © 2015-2021 Michael Dvorkin All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part of this software or its related documentation, in any form, or by any means. Reverse
engineering, disassembly, or de-compilation of this software, unless required by law for interoperability, is prohibited.

Contacts

For any questions and support regarding this product, contact Michael Dvorkin (tel +79185402272,
support@LazyDeploy.com).

Licensing

Raduga Free software can be used for free. It is restricted to 5 environments and 50 projects. Free edition has a limited
technical support.

Raduga Pro software can be used for free during the trial period of 30 days. After the end of the trial period, you must
install a private license for each user to continue using the software. Raduga Pro can manage an unlimited number of
environments and projects and it has full technical support.

Contact Michael Dvorkin (tel +79185402272, support@LazyDeploy.com) to obtain Raduga licenses.

Disclaimer

Raduga allows deleting database and file system objects. In some cases the objects are replaced during the migration of
development projects. Raduga users should carefully test all development projects in a test environment before
implementing them in production. We accept no liability for any damage caused by the Raduga application. Object
transmission cannot be guaranteed to be secure or error-free, as migration rules can differ from one environment to
other. We therefore do not accept liability for any errors or omissions in the contents of custom objects which might
arise as a result of object transmission. Although we have taken reasonable precautions to ensure proper performance
of Raduga software, the company cannot accept responsibility for any loss or damage arising from the use of Raduga.

mailto:support@LazyDeploy.com
mailto:support@LazyDeploy.com

5

About Raduga

Raduga is an application that helps you manage the development and deployment process. It is designed for Oracle
applications; however, it can be used in any development environment. A user-friendly interface, easy navigation
between applications and projects, various migration and deployment capabilities, version control and reporting make
Raduga a useful tool for programmers, team leaders and project managers.

Raduga offers to users

 Object migration between environments

 Intuitive navigation between entities

 Object comparison

 Version control and deployment history

 Monitoring environment status

 Starting/stopping environments

 Data loading capabilities

 Easy customization

 Comprehensive reporting

 File transfer capabilities

 Enhanced security

6

Raduga Development Concepts

Internal Architecture
Raduga stores the complete definition and architecture of the target environment, as well as a set of rules for working

with the database and file system objects in the target environment. To do this, Raduga defines several metadata

objects (services, entities, entity types, steps and constants) that fully describe the database, file system, E-Business

Suite and other environments.

Raduga's configuration definition is stored in XML files in the Raduga global configuration directory. The path to Raduga

global configuration directory can be found in the HKLM\Software\Raduga6\ConfigDir registry key. All XML files of the

form Raduga_*.xml in the Raduga global configuration directory are treated as Raduga configuration files.

Raduga installs eight configuration files by default:

 Raduga_UTIL.xml Stores general definitions used by other configuration files

 Raduga_DB.xml Defines Raduga utilities for database objects

 Raduga_EBS.xml Defines Raduga utilities for E-Business Suite objects

 Raduga_FILE.xml Defines Raduga utilities for files

 Raduga_APEX.xml Defines Raduga utilities for Oracle Apex

 Raduga_SETUP.xml Defines Raduga utilities for E-Business Suite setup

 Raduga_CLOUD.xml Defines Raduga utilities for Oracle Cloud

 Raduga_Custom.xml A custom configuration file that stores all custom definitions as well as Raduga seeded

 utilities that have been modified

All Raduga objects have a prefix that depends on the configuration file that defines the object. For example, all objects

defined in the Raduga_UTIL.xml file have the “util” prefix (util.find_files, util.SETUP_DIR). All objects defined in

Raduga_EBS.xml have the “ebs” prefix (ebs.apache_start).

Custom objects may have a prefix. We strongly recommended that you follow Raduga’s development standards and

create custom objects with custom prefixes. The default custom prefix is “xxx”. It is defined in the “util.CUSTOM_PREFIX”

variable and can be changed to a preference of your choice by a Raduga Administrator.

The following sections describe Raduga objects used for defining Raduga environments. They are:

 Services

 Entities

 Entity Types

 Steps

7

 Constants

Services
Modern environments usually have a distributed architecture and may be installed on multiple servers. Each server has

its own specialization. For example, the E-Business Suite system may consist of a database, concurrent, forms, and web

servers. To describe the complex architecture, Raduga uses a special object called a “service”. Currently there are

several built-in services defined in Raduga:

 db.database – a database service hosted by the database server

 db.listener – a database listener service hosted by the database server

 ebs.concurrent – the concurrent manager server hosts this service

 ebs.mailer – a mailer service hosted by the concurrent manager server

 ebs.listener – a listener service hosted by the concurrent manager server

 ebs.discoverer – a discoverer service hosted by the discoverer server

 ebs.discoverer_infra – a discoverer infrastructure service hosted by the discoverer server

 ebs.forms – a forms service hosted by the forms server

 ebs.framework – a framework service hosted by the web server

 ebs.opmn – an opmn service hosted by the web and forms server

 ebs.reports – a service hosted by the concurrent manager server (obsolete in R12)

 ebs.web – a web service hosted by the web server

 cloud.fin - a cloud financial service

 cloud.hcm - a cloud HCM service

 util.file – the files server as well as all other server types can host this service

Raduga allows adding custom services to satisfy organization needs. Every server defined in the system can host one or

more services.

Entities
An entity defines rules for working with the database or file system objects. Here are some examples of entities defined

in Raduga:

db.Packages

8

db.Users

ebs.Alerts

ebs.Forms

Currently there are more than 100 built-in entities in Raduga. You can create a custom entity for the objects that are

used in your client system. Entities are visible to Raduga users.

Every entity is based on an internal entity type that defines basic operations that can be performed on the entity object.

Every entity has a list of services that it works on. According to this list Raduga decides how to deploy objects belonging

to a specific entity.

Entity Types
Every entity has its own entity type that defines the low level technical operations that can be performed with the entity

object. For example, the “db.package” entity type contains database commands that are executed in order to list all

database packages, save them to file and compile them.

Steps
Steps are procedures executed on the server. Examples of procedures are “Start Apache Server” or “Compile APPS

schema”. Raduga decides which server to execute a step on according to the services defined for the step and hosted by

the server.

Constants
Constants define the behavior of entities and steps. Raduga defines several built-in constants:

 ebs.UPDATE_WHO_FIELDS defines whether “created/update by” and “create/update date” fields are updated

during object migration

 db.UPDATE_DB_OBJECTS defines whether Raduga allows users to delete or rename database objects

 ebs.UPDATE_EBS_OBJECTS defines whether Raduga allows users to delete or rename E-Business Suite objects

 util.UPDATE_FS_OBJECTS defines whether Raduga allows users to delete or rename files

9

Defining Entity Types

General Concepts

An Entity type is a central configurable Raduga class that defines migration rules. In general, for every object that can be

migrated by Raduga it is necessary to define at least three operations:

 List – how to get a list of all objects

 Get – how to get the object from the server

 Put – how to put the object on the server

Additionally you can define the following operations:

 Deploy – how to install the object after it was sent to the server

 Delete – how to delete an object from the server

 Rename – how to rename the object on the server

Operation “List”

To list all database packages, their last compile time and their status, run the following query:

select object_name, last_ddl_time, status
 from user_objects
 where object_type = 'PACKAGE BODY'

You can use this statement to define the “List” operation for the database package entity type.

In fact the operation should be written as a shell script using “sh” syntax according to special rules that Raduga uses.

Here is the “list” operation for the “db.package” entity type, from the Raduga_EBS.xml configuration file:

Step{util.define_env}

'sqlplus' -s ${DBCREDENTIALS} << SQL
set pages 0
set lines 32767
set trimspool on
set feed off
set wrap on
select trim(object_name)||'|'||to_char(last_ddl_time,'DD/MM/YYYY HH24:MI')||'|'||status
 from user_objects
 where object_type = 'PACKAGE BODY'
 and upper(object_name) like upper(replace('${MASK}','*','%'))
 order by object_name;
exit;
SQL
Step{util.Exit}

10

The script uses some built-in variables:

${DBCREDENTIALS} variable stores database user/password

${MASK} variable stores a UNIX type wildcard entered by user in order to restrict the search to only relevant objects

Note that Raduga variables should be enclosed in {} brackets in a script.

Step{uti.define_env} is a sub procedure defined in the Raduga_UTIL.xml configuration file. The file contains technical
sub procedures that can be used in Raduga scripts. Raduga replaces the Step{util.define_env} string with the actual code
that defines the environment for Raduga scripts. The util.define_env procedure contains commands for defining a
script’s environment.

Step{uti.Exit} is a sub procedure defined in the Raduga_UTIL.xml configuration file. The util.Exit procedure contains
commands for correct exiting from the shell script.

All calls to standard UNIX or Linux commands should be enclosed in apostrophes (for example, 'sqlplus') in order to
avoid using custom aliases.

Use at least the following sqlplus formatting instructions to create output that Raduga can parse:

set pages 0
set lines 32767
set trimspool on
set feed off
set wrap on

Dates should have the following format: DD/MM/YYYY HH24:MI

SQL query output should be a list of fields separated by pipes (the “|” sign). You can achieve this in two ways:

 By concatenating the columns

select trim(column1) || '|' || trim(column1) from …

 By setting the column separator to “|”

set colsep '|'

Here is another example of listing ADI integrators:

Step{util.define_env}

'sqlplus' -s ${DBCREDENTIALS} << SQL
set pages 0
set lines 32767
set feed off
set wrap off

11

set def off
set colsep '|'
col user_name format a100
col layout_code format a100
col ddl_time format a22
select t.user_name, t.integrator_code, to_char(greatest(t.last_update_date, t.creation_date),'DD/MM/YYYY HH24:MI')
ddl_time
 from bne_integrators_tl t,
 fnd_application a
 where t.application_id = a.application_id
 and a.application_short_name = upper('${APP}')
 and t.language = '${LANGUAGE}'
 and upper(t.user_name) like upper(replace('${MASK}','*','%'));
exit;
SQL
Step{util.Exit}

In this example there are two additional built-in variables:

${APP} stores the application code chosen by the user (for example, SQLGL)

${LANGUAGE} stores the language code (for example, US)

Operation “Get”

For the objects existing on the server there is no need to implement a “get” operation. However, it is necessary to
download database objects from the database as a part of a “get” procedure. Here is an example of downloading the
ADI Integrator (“get” operation for the “ebs.adi_integrator” entity type):

Step{util.define_env}
Step{ebs.get_nls_lang}

if [$STATUS -eq 0]
then
 FNDLOAD ${DBCREDENTIALS} O Y DOWNLOAD $BNE_TOP/patch/115/import/bneintegrator.lct
"${STAGE}/${OBJECT_HASH}" BNE_INTEGRATORS INTEGRATOR_ASN="${APP}" INTEGRATOR_CODE="${OBJECT_2}"
1>${ERR_FILE} 2>&1
 logfile=`'cat' ${ERR_FILE} | 'grep' '.log' | 'awk' '{print $NF}'`
 if [! -f "$logfile"]
 then
 MESSAGE=`'cat' ${ERR_FILE}`
 Step{util.Failure}
 else
 Step{ebs.check_fnd_status}
 fi

 Step{util.rcs_co}
fi
Step{util.Exit}

12

Here is an explanation of some commands from the example:

Step{util.define_env} defines the environment for the current shell.

Step{ebs.get_nls_lang} defines the NLS_LANG environment variable according to the language chosen by the user. It is
required so the FNDLOAD utility can work correctly.

$STATUS variable is defined in Step{util.define_env} and can be used in all Raduga procedures. Note that the $STATUS
variable is a shell script variable, so it does not have to be enclosed in brackets {}. Only Raduga’s built-in variables should
always be enclosed in brackets {}.

FNDLOAD is a standard Oracle utility used for downloading/uploading Oracle Applications database entities.

${STAGE} is a Raduga built-in variable that defines a path on the server where Raduga can store its temporary and RCS
objects.

${OBJECT_HASH} is a Raduga built-in variable that stores the unique hash value of the current Raduga object. Raduga
uses hash strings instead of real object names because object names can contain spaces as well as national language
characters that cannot be used in file names.

${OBJECT_2} is a Raduga built-in variable that contains a value from the second column of the object list (in this example,
an integrator code).

${ERR_FILE} is a Raduga built-in variable that contains a name of the error file for the current session.

Step{util.Failure} is a standard Raduga utility that is called if the process fails.

Step{ebs.check_fnd_status} is a standard Raduga routine that is able to parse the $logfile and decide whether the
FNDLOAD utility was successful.

Step{util.rcs_co} is a standard Raduga utility that is responsible for checking out the object from the Raduga RCS
(Revision Control System).

Step{uti.Exit} is a sub procedure that contains commands for correct exiting from the shell script.

Every operation should be finished by the Step{uti.Exit} command to return to Raduga the current operation status.

Operation “Put”

For existing file system objects it is not necessary to define “put” operation. For database objects it is necessary to
define rules for uploading the objects to the database.

Here is an example of a “put” operation for the “ebs.adi_integrator” entity type:

Step{util.define_env}
Step{util.rcs_ci}

if [${STATUS:-0} -eq 0]
then

13

 Step{ebs.get_nls_lang}
 Step{ebs.update_who_fields}
 FNDLOAD ${DBCREDENTIALS} O Y UPLOAD $BNE_TOP/patch/115/import/bneintegrator.lct
"${STAGE}/${OBJECT_HASH}" - WARNING=YES ${UPLOAD_MODE:-} CUSTOM_MODE=FORCE 1>${ERR_FILE} 2>&1
 logfile=`'cat' ${ERR_FILE} | 'grep' '.log' | 'awk' '{print $NF}'`
 if [! -f "$logfile"]
 then
 MESSAGE=`'cat' ${ERR_FILE}`
 Step{util.Failure}
 else
 Step{ebs.check_fnd_status}
 fi
fi

if [-f "${STAGE}/${OBJECT_HASH}"]
then
 'rm' -f ${STAGE}/${OBJECT_HASH}
fi

Step{util.Exit}

Here is the explanation of some commands from the example:

Step{util.rcs_ci} checks the object into the Raduga RCS repository.

Step{ebs.update_who_fields} updates the “who” fields (update date and updated by) in the “LDT” file that contains
object definitions for the FNDLOAD utility.

${UPLOAD_MODE} is defined in the Step{util.define_env} procedure and defaults to “UPLOAD_MODE=REPLACE”.
However it can be overridden by the Step{ebs.get_nls_lang} utility and set to “UPLOAD_MODE=NLS” when an NLS object
is uploaded.

Step{ebs.check_fnd_status} is a standard Raduga routine that can parse the $logfile and decide whether the FNDLOAD
utility was successful.

Operations “Delete” and “Rename”

To delete or rename an object from the server, Raduga uses a standard Oracle API or direct database update. However,
for some objects the “Delete” operation is not possible because Oracle Applications does not supply an API or direct
database operation is not allowed. Many organizations do not allow deleting and renaming Oracle Applications objects
in any way other than via Oracle Applications, so by default Raduga does not allow deleting/renaming objects. However,
the Raduga administrator can change this behavior by updating these Raduga built-in constants:

${ebs.UPDATE_EBS_OBJECTS} = Y – to allow deleting and renaming application objects (default: N)
${ebs.UPDATE_DB_OBJECTS} = Y – to allow deleting and renaming database objects (default: N)
${ebs.UPDATE_FS_OBJECTS} = Y – to allow deleting and renaming file system objects (default: N)

Here is an example of “delete” operation for the “ebs.adi_integrator” entity type:

Step{util.define_env}

14

if ["${ebs.UPDATE_EBS_OBJECTS}" == "Y"]
then

'sqlplus' -s ${DBCREDENTIALS} << SQL 1>${ERR_FILE} 2>&1
set def off
declare
 m_app_id fnd_application.application_id%type;
 m_res number := 0;
begin
 select application_id
 into m_app_id
 from fnd_application
 where application_short_name = '${APP}';

 m_res := BNE_INTEGRATOR_UTILS.DELETE_INTEGRATOR (p_application_id => m_app_id,
 p_integrator_code => '${OBJECT_2}');
 commit;
end;
/
exit;
SQL
 sts=$?
 res=`'cat' ${ERR_FILE} | 'egrep' 'ORA-|PLS-'`
 if [$sts -ne 0 -o -n "$res"]
 then
 MESSAGE=`'cat' ${ERR_FILE}`
 Step{util.Failure}
 fi

else
 MESSAGE="Raduga administrator has disabled this action"
 Step{util.Failure}
fi

Step{util.Exit}

Here is an example of the “rename” operation for the “ebs.adi_integrator” entity type:

Step{util.define_env}

if ["${ebs.UPDATE_EBS_OBJECTS}" == "Y"]
then

'sqlplus' -s ${DBCREDENTIALS} << SQL 1>${ERR_FILE} 2>&1
set def off
update bne_integrators_tl t
 set t.user_name = '${NEW_OBJECT}'

15

 where t.integrator_code = '${OBJECT_2}'
 and t.language = '${LANGUAGE}';

commit;
exit;
SQL

res=`'cat' ${ERR_FILE} | 'grep' ^ORA-`
if [-n "$res"]
then
 MESSAGE=$res
 Step{util.Failure}
fi

else
 MESSAGE="Raduga administrator has disabled this action"
 Step{util.Failure}
fi

Step{util.Exit}

Here is the explanation of some commands and variables from the example:

Step{util.define_env} defines environment for current shell.

${DBCREDENTIALS} stores the database user/password.

${ERR_FILE} contains the name of the error file for the current session.

${NEW_OBJECT} contains the new object name entered by the user during the “rename” operation.

${APP} stores the application code chosen by the user (for example, SQLGL).

${LANGUAGE} stores the language code (for example, US).

$STATUS this variable is defined in Step{util.define_env} and can be used in all Raduga procedures.

${OBJECT_2} contains a value from the second column of the object list (in this case it’s an integrator code).

Step{util.Failure} a standard Raduga utility that is called if the process fails.

Step{ebs.check_fnd_status} parses the $logfile and determine whether the FNDLOAD utility was successful.

Step{util.rcs_co} checks out the object from the Raduga RCS (Revision Control System).

Operation “Deploy”

For some objects it is necessary to perform additional commands during their deployment. These commands can be
added as a part of the “deploy” operation.

16

Entity Types customization

Entity types cannot be changed. However, you can alter entity type behavior by customizing the steps that comprise it.
See Appendix C for the list of Raduga built-in customizable steps.

You can also create your own custom entity types to archive a behavior specific to your company’s needs. To do that,
open the “New Entity” form by going to “Admin” -> “Global Configuration”. Select “Entity Types” in the “Objects” drop
down and click “Edit”. In the entity types list form click “Add”. In the “New Entity” form choose an existing entity type in
the “Create As” drop down:

This will bring the full definition of the selected entity type and replace its prefix by the custom prefix defined by the
“util.CUSTOM_PREFIX” constant. You can edit the new entity type and modify the existing code, or add your own code
to its definition.

To configure entity type you need to define “list”, “get” and “put” commands. Each command can be defined differently
for different environment types. If the environment type is not selected for the command definition, it is used as a
default definition for all environment types.

17

In this example the “list” command is defined for the “apex.app” entity type. The environment type is empty therefore
this definition will be used for all environments.

18

Creating User Values
In some cases Raduga needs to get additional input from the end user while transferring an object to or from the server.
For example, when you import the discoverer workbook you need to know information like the workbook owner and
responsibility. To get this information from the end user add the following code to the “put” operation of the
ebs.discoverer_report entity type:

<RadugaValues>
 <condition value1="x" value2="x" />
 <variable name="MYUSER" type="String" title="Workbook Owner" default="${OBJECT_3}" sql="select
user_name from fnd_user" />
 <variable name="MYPASSWORD" type="Password" title="Workbook Owner Password" default="" sql="" />
 <variable name="MYAPPSMODE" type="String" title="Apps Mode" default="Y" sql="Y,N" />
 <variable name="MYAPPSRESP" type="String" title="Responsibility" default="" sql="select
resp.responsibility_name from fnd_user_resp_groups urg, fnd_responsibility_vl resp where urg.responsibility_id =
resp.responsibility_id and urg.responsibility_application_id = resp.application_id and urg.user_id = (select user_id from
fnd_user where user_name = upper('${PARAM0}'))" />
 <variable name="MYEUL_US" type="String" title="EUL_US" default="${EULUSER}" sql="" />
 <variable name="MYADM" type="String" title="Add admin privilege to Workbook Owner?" default="Y" sql="Y,N"
/>
</RadugaValues>

Code explanation:

<RadugaValues> XML tag opening/closing the code

<condition> The code will be executed only if value1 is equal to value2. In the example, the code will
 always execute. However there are cases when the code should be executed only for
 specific files only. Look at the example:

 <condition value1="${REMOTEEXTENTION}" value2="class" />

 In this case the code will only execute for files with a .class extension.

<variable> Variable definition. It consists of the following parts:

 name variable name. It can be used further in the entity operation code. Here is an
 example:

 eulapi -connect ${MYUSER}/${MYPASSWORD}@${ENV}

 type variable type. Valid values: String, Int, Password, Date

 title variable display name. Instead of a free text, you can put here a code of

the message defined in Raduga (see “Defining Messages” section of this guide)

 default variable default value

 sql variable valid values (see section “Defining Valid Values”)

19

This code will cause the user values form to appear during discoverer report deployment:

The end user enters values for all the required parameters. If there are more than four parameters (which is true in our
case), use the up and down arrows to navigate through the list. The parameters with “sql” populated in the code are
displayed as drop down valid values lists. Some of the parameters have default values.

In the form:

Workbook Owner A title taken from the “title” node of the previous code

Use Current Values for All Entities Select to display currently-entered values for all discoverer reports.

Use Default Values for All Entities Select to display default values for all discoverer reports.

Default Press to restore default values for all parameters.

For All Entities Select to accept the current or default values, and not display the form again.

Defining Valid Values

In some cases when defining parameter you need to construct a valid values list for the parameter. Several commands

that can create the parameter's valid values list:

 List

Comma separated list of valid values. Example: Y, N

20

 One of the built-in Raduga variables:

[ENVIRONMENTS] – all existing Raduga environments in long name format (like EBS.TST, DB.PROD)

[SHORTENVIRONMENTS] – all existing Raduga environments in short name format (like TST, PROD)

[ENTITIES] – all existing Raduga entities

[APPLICATIONS] – all applications existing in the environment

[LANGUAGES] – all languages existing in the environment

[STATUSES] – all Raduga statuses

 SQL statement

A valid SQL statement that returns one column. In the “where” part of the SQL statement it is possible to use a

value of other parameters: ${PARAM0}, ${PARAM1}, ${PARAM2} etc.

21

Adding/Updating Entity Types
Raduga lets you edit some of the existing entity types and add new ones. All changes to existing “seeded” entity types
and all new entity types are saved in the Raduga_Custom.xml configuration file. Only the Raduga administrator can add
or edit entity types.

To add or edit entity types:

1. Press “Admin” on the Raduga main form.
2. In the “Private Configuration” window that appears, press “Global Configuration”.
3. In the “Global Configuration” window choose “Entity Types” in the “Objects” drop down menu and press “Edit”:

22

The “Entity Types” window appears:

 To view/edit an existing entity type, select the entity type in the “Entity Types” list box and click “View/Edit”.
For customizable entity types the “Edit” button is enabled. For the read-only default entity types a “View”
button is available instead of the “Edit” button.

 To add a new entity type, press “Add”.

23

The “Command” window appears:

The following fields and controls are available:

Create Like Choose an entity type from the drop down list to use as a template for the new entity type.

New Press to create a new entity type.

Customizable A read-only box that indicates whether the entity type can be edited. If the “Customizable” box

is unchecked the entity type can only be viewed.

Name Entity Type name.

Command Type Choose an operation and provide a shell script for it in the “Command Source” box.

Environment Type Choose appropriate environment type:

24

You can define separate commands for different environment types. If the environment type is

empty, the command will be used as a default command for all environments.

Enabled Select to enable the entity type.

Origin The entity type origin has two values: “existing” for files and “generated” for database objects

 (or any objects that are not files).

Extension Downloaded file extension (for example, “ldt” for files downloaded by the FNDLOAD utility). Can

 be empty for existing entity types.

Default Select to use this as the default entity type for all entities.

Plain Rename Select to allow objects of this type to be renamed in a single step. Deselect to require the object

 to be deleted and re-created when you rename it.

Command Source Enter the shell script that implements the current operation (command type).

Alternative Service Add an alternative service for the current operation (usually used for external applications like

Discoverer).

Variable Choose a built-in variable to add to the shell script.

Step Choose a built-in step to add to the shell script.

Save Save the current command source code.

25

Defining Steps
A step is a Raduga built-in procedure that executes an auxiliary operation. Example of such operation can be “Start
Concurrent Server” or “Compile JSP”. Raduga lets you edit some of the existing steps and add new ones. Raduga saves
all changes to existing, “seeded” steps and all new steps in the Raduga_Custom.xml configuration file. Only the Raduga
administrator can add or edit steps.

To add or edit steps:

1. Press “Admin” on the Raduga main form.
2. In the “Private Configuration” window press “Global Configuration”.
3. In the “Global Configuration” window choose “Steps” in the “Objects” drop down menu and press “Edit” to

display the “Steps” window.

In the “Step Services” region check all services that are relevant to the current step. For example, the step “ebs.cm_start”
starts the concurrent manager, so the relevant service is “ebs.concurrent”.

In the “Step Entities” region select “All” or check all entities that are relevant to the current step. For example, the step
“ebs.cm_start” is a general step that does not depend on entity, so “All” should be checked.

26

The “Compile Form” step compiles server form, so the relevant entity is “ebs.Forms”.

Check the “Internal” check box if the step is used for internal purposes and shouldn’t be shown to the end user.

The “Display Name” may be left blank for internal steps. Steps shown to the end user should have a display name.

Raduga lets you customize some of the seeded steps to change the behavior of Raduga entities. There are several
customizable steps:

util.define_env is a general procedure that is executed at the beginning of each operation. It contains general shell
script environment definitions. Here is its code:

set +u
unset MAILCHECK
unset MAIL

if [-n “${ENV_FILE}” -a -f “${ENV_FILE}”]
then
 . ${ENV_FILE}
else
 if [-f ~/.bash_profile]
 then
 . ~/.bash_profile
 else
 if [-f ~/.profile]
 then
 . ~/.profile
 fi
 fi
fi

set +u
unset MAILCHECK
unset MAIL

UPLOAD_MODE=”UPLOAD_MODE=REPLACE”; export UPLOAD_MODE
STATUS=0; export STATUS
MESSAGE=””; export MESSAGE

Custom actions

case “${ENTITY}” in

You can add your code here
This custom code will be executed for each entity:

Example:

27

ebs.Form_Functions)
Your code here
;;
ebs.Programs)
Your code here
;;
ebs.Forms)
Your code here
;;

*)
 ;;

esac

This custom code will be executed for all entities:
Your code here

End of custom actions

The code contains a special place for adding custom commands for changing script behavior. The custom code can be
added inside the “case” statement if it is designed for a specific entity or outside the “case” statement if it is general
code.

Another step that can be customized is util.Exit. This step is called at the end of each operation and also contains a
custom code section. See Appendix C for the list of Raduga built-in customizable steps.

28

Defining Custom Actions

External steps defined for a list of entities appear in the entity’s context menu as “Actions”. Here is an example of the
“ebs.CompileForm” step displayed as a “Compile Form” action in the ebs.Forms entity’s context menu.

Users can select the “Compile Form” action to compile the server form.

To define a custom action, create an external step and choose the entities that are relevant to its action. The step will
automatically appear in the context menu when the user selects an object of that entity.

29

Entities

Defining Entities
An Entity Type is an internal representation of a Raduga object. An Entity defines its object’s presentation to the user.

When the user chooses an entity, for example, ebs.Alerts, on the main Raduga form, Raduga shows a list of alerts

defined in the current environment on the right panel.

Every Entity is connected to one Entity Type.

The configuration of an Entity is a set of rules that define how the Entity will be presented to the user and how its

objects will be implemented on the server side. Here are some examples of entities:

db.Packages

ebs.Alerts

ebs.Profiles

The list of available entities appears when you choose “Entities” in the “Objects” drop down box in the Raduga Global

Configuration screen.

 To edit an entity, choose it in the “Entities” list box and press “Edit”.

 To add new entity, press “Add”.

30

The “Entity” definition window opens:

The following fields and controls are available:

Create Like Choose an entity from the drop down list to use as a template for the new entity.

New Press to create a new entity.

Enabled Select to enable the entity

Name Entity name.

Entity Type Entity type that is connected to the entity.

Restricted Restricted entities do not allow end users to change navigation paths and object masks.

31

Needs Access to DBA Views Select to require access to DBA views for the entity to deal with its objects.

 The entity will not be available for environments that do not have DBA view access.

Requires SYSDBA Select to require a sysdba connection for the entity to deal with its objects.

Columns Select to define entity display columns (See “Defining Entity Columns”).

Additional Select to define additional variables for the entity (See “Defining Additional Values”).

Tasks A list of tasks for which the entity will be displayed.

Environment Types Environment types (DB, EBS, FTP, MISC) for which the entity will be displayed.

Service Services (db.database, ebs.concurrent …) that the entity objects belong to.

Mask A default mask that restricts a list of objects displayed to the user.

Depends on Application Select to make entity objects dependent on the application. The “Application” drop

down list becomes available to the end user and the ${APP} variable is defined inside

the entity definition.

Depends on Language Select to make entity objects dependent on the language. The “Language” drop

 down list becomes available to the end user and the ${LANGUAGE} variable is defined

 inside the entity definition.

Remote Path The entity’s default remote path. A remote path example (taken from the

 ebs.Framework entity):

 $JAVA_TOP/${CUSTOM_APP}/oracle/apps/${APP_LC}

 In this example:

 ${CUSTOM_APP} an additional variable that can be entered by the end user

 ${APP_LC} a Raduga built-in variable that contains the application name in lower case

Local Path Entity’s default local path. The local path typical example is:

 ${BASEDIR}\${ENV}

 In this example:

 ${BASEDIR} is a Raduga variable that contains the private working area path for the current Raduga user.

 ${ENV} is a Raduga variable that contains the current environment name.

Add Entity Type Click to open the empty entity type definition window.

32

Edit Entity Type Click to open the entity type definition window.

Defining Entity Columns
Entity default columns correspond to the main file attributes:

 Name

 Date

 Size

However, you can define custom columns for each entity. To do so, press “Columns” in the “Entity” form to display the

“Columns” window:

You can select an existing column or add a new one. The form displays the following information for each column:

Column’s sequential order

Name Column’s name (it is displayed to the end user if no translation for the column is defined)

Length Column’s length as a percentage of the right Raduga panel’s width

Type Column’s data type

Primary Key Defines if the column is a part of a primary key

Double click on one of the columns from the list to edit it. The “Edit Column” form appears:

33

The following fields are available:

Column Name Column’s name (it is displayed to the end user if no translation for the column is defined)

Width Column’s length as a percentage of the right Raduga panel’s width

Data Type Column’s data type

List of Values The column’s valid values (see section “Defining Valid Values”)

34

Defining Entity Column Primary Key
Entity default primary key consists of the first column. If the first column is not enough to ensure the uniqueness of the

entity name you can define complex primary key. When defining entity column check the “Primary Key” check box to

make the column a part of entity’s primary key:

35

Defining Column Translations
To display to the end user the translated caption for the column, you can define column’s translation. Press “Translate”

on the Columns to open the translations form:

Translate the column’s caption for all available languages and press “OK”

36

Defining Additional Values
You can use additional variables in the definition of entity type operations. For some entities it is necessary to collect

additional information from the end user. If additional variables exist for the entity, the “+” sign to the right of local

mask becomes available to the end user on the main Raduga window. Press the “+” sign to enter values for additional

variables:

During the additional variable definition you can add a list of valid values which can be in a comma separated list of

strings or a SQL statement that returns one column (See “Defining Valid Values”). The additional variable name can be

used in the entity type operation definition scripts and in remote path definition. For example, the remote path

definition for the ebs.Framework entity is:

$JAVA_TOP/${CUSTOM_APP}/oracle/apps/${APP_LC}

Here ${CUSTOM_APP} is a name of the additional variable that is entered by the end user. So the end user can alter the

remote path according to the custom application selection.

Defining Constants
Constants are objects that hold constant values and influence application behavior. Constants can hold directory paths,

date formats, yes/no values, etc.

 To edit a constant, open Global Configuration, choose “Constants” in the “Objects” drop down and press “Edit”.
Choose a constant in the “Constants” list box and press “Edit”.

37

 To add new constant, press “Add”.

The “Constant” definition window appears:

In the “Edit Constant” form there are the following fields:

Constant Name The name of the constant

Value The constant value

ID, Type, List of Values These fields are always disabled for constants

Defining Messages
A Raduga administrator can customize messages that are displayed by the Raduga application.

To edit a message, open Global Configuration, choose “Messages” in the “Objects” drop down and select “Edit”. Choose
a message in the “Messages” list box and select “Translate”.

The message “Translations” window appears:

38

You can edit the message and change its text in each listed language.

39

Defining Services
Services are internal objects that connect entities and servers. In general, each server can host several services; for

example, one server can be used to host the database and serve as a concurrent manager server. In this case it will host

both db.database and ebs.concurrent services. On the other hand entities can belong to specific services. For example,

the db.Sequences entity belongs to the db.database service and does not belong to the ebs.forms service. In this specific

example, during the Raduga migration process, the db.Sequences entity objects will be migrated only to the servers that

host db.database service.

Raduga provides several built-in services:

db.database

db.listener

ebs.concurrent

ebs.mailer

ebs.discoverer

ebs.forms

ebs.framework

ebs.opmn

ebs.reports

ebs.web

ebs.discoverer

ebs.discoverer_infra

util.file

You can also add custom services. To add a service:

 Open Global Configuration

 Choose “Services” in the “Objects” drop down and press “Edit”.

 In the Services list form, press “Add”.

The “New Service” form appears:

40

The following fields are available:

Name The name of the service

Start Select the procedure to start the service

Stop Select the procedure to stop the service

Status Select the procedure to check the service’s status

Log Select the procedure to view the service’s log file

Start, stop, status and log procedures are the existing Raduga steps you should create before creating the service.

Raduga has procedures (steps) for starting, stopping, status checking and log file viewing for its built-in services. For

example, to start the ebs.concurrent service, Raduga uses the ebs.cm_start step. These definitions are used for

monitoring, starting and stopping Raduga environments.

Defining Project Approval Rules
Approval rules define the list of Raduga users who need to approve the development project for deployment to a

specific environment. Raduga does not allow developers to deploy the project in an environment restricted by the

Project Approval Rule if not all users defined by the rule approve it for deployment.

To add a rule:

 Open Global Configuration

 Choose “Project Approval Rules” in the “Objects” drop down and select “Edit”.

 In the Project Approval Rules list form, select “Add”.

41

The “Rule” form appears:

The following fields are available in the form:

Name The name of the approval rule.

Enabled Check/uncheck to enable/disable the rule.

Development Type The type of development project affected by the rule. Choose “All” to create

a rule that affects all development projects. Choose specific development types

to restrict the rule to those types.

Environment The environments affected by the rule. Choose “All” to require the project to be

approved for deployment in all environments, or choose specific environments

for which project deployment needs to be approved

Approvers A list of Raduga users comprising the approval chain. The project will not be

approved for deployment unless all users on the approval chain approve it

42

Reports

Defining Reports
During Raduga configuration you can configure the Raduga Reporting Database. The database is not required for Raduga

to function; however, you can use it to track activity. Once you have configured the Reporting Database, you can create

reports that show Raduga objects usage history.

Raduga provides a set of pre-defined reports which you can use as-is or modify to suit your needs.

To edit existing report or create a new one:

1. Open Global Configuration.

2. Choose “Reports” in the “Objects” drop down and press “Edit”.

3. In the Reports list form, press “Add” to create a new report.

4. To edit an existing report, press “Edit”.

The “Report” window appears:

In the “Report” form there are the following fields and controls:

Create Like Choose a report from the drop down list to use as a template for a new report.

43

New Press to create a new report .

Name The report name.

Long Name The report name as it will be displayed to the end user.

Parameters Press to define the parameters of the report.

SQL Query The SQL that is used to produce the report’s data.

Defining Report Parameters
In the SQL query used to produce the report’s data you can add parameters in the following form: {N}, where N is an

integer starting from 0. The parameters must be sequential integers without gaps. Here is an example of a SQL query

with parameters:

select d.project “Project”,
 d.environment “Environment”,
 r.object_name “Object”,
 r.entity “Entity”,
 r.language “Language”,
 to_char(r.depl_date, ‘DD/MM/YYYY HH24:MI:SS’) “Date”,
 d.depl_login “User”,
 r.status “Status”
 from rdg_deployments d,
 rdg_deployment_rows r
where d.depl_id = r.depl_id
 and d.project like ‘{0}’
 and d.environment like ‘{1}’
 and r.object_name like ‘{2}’
 and r.entity like ‘{3}’
 and (r.language like ‘{4}’ or r.language is null)
 and (‘{5}’ is null or r.depl_date >= to_date(nvl(‘{5}’,sysdate),’DD/MM/YYYY’))
 and (‘{6}’ is null or r.depl_date < to_date(nvl(‘{6}’,sysdate),’DD/MM/YYYY’)+1)
 and d.depl_login like ‘{7}’
 and r.status like ‘{8}’
 order by d.project, d.environment, r.depl_date

44

To define parameter properties, press “Parameters” to open the Parameters list form:

The “Parameters” form provides this information for each parameter:

Parameter Name The name of the parameter

ID The parameter sequential Id

Long Name The parameter name displayed to the end user

Data Type The parameter data type (String, Date, Integer)

45

To edit an existing parameter, select the parameter and press “Edit”. To create a new parameter press “Add”. The “Edit

Parameter form appears:

In the “Edit Parameter” form there are the following controls:

Parameter Name The name of the parameter

ID The parameter sequential Id (it is used in the report SQL statement as {ID})

Long Name The parameter display name

Data Type The parameter type

List of Values The parameter’s valid values (see section “Defining Valid Values”)

46

Defining Parameter Translations
You can translate every report parameter into languages supported by Raduga. Currently there are three supported

languages:

 English

 Hebrew

 Russian

To translate report parameters, select the parameter in the parameter list and press “Translate” to open the

“Translations” form:

Provide a translation for the parameter display name in each supported language, then press “OK”.

47

Development Steps
In general Raduga development consists of the following steps:

1. Describe the object you want to add to Raduga and create a functional design for the object’s entity.

2. Add necessary constants, steps and services that the object’s entity will use.

3. Create the Entity Type:

a. Define “list”, “get”, “put” operations for the object.

b. Optionally define “delete”, “deploy” and “rename” operations for the object.

4. Create the Entity:

a. Base the entity on the entity type you defined.

b. Choose tasks, services, environments and a remote mask for the entity.

c. Optionally define remote and local paths for the entity.

d. Optionally define columns and additional variables for the entity.

5. Specify entity permissions. If necessary, assign the entity to specific users.

48

Exporting and Importing Development Projects
Raduga has a special interface for exporting and importing development projects.

Entire development projects can be exported/imported using the “Search Development Project” window (see “Opening

an Existing Development Project” in the Raduga User Guide):

To export a development project, select it in the projects list and click “Export”. The export ZIP file will be created. This

file contains a project metadata file as well as all custom objects included in the project. This file can be used for

importing the project into another Raduga instance.

In order to import the project, click “Import” and choose the project export ZIP file to import.

Appendix

Appendix A – List of Raduga built-in variables

APP Current application name

APP_LC Current application name in lower case

APPLOGIN Current application login name (can be different from Raduga login name)

APPSERVER Current application server name

49

APPSPASSWORD APPS password

APPSUSER APPS user name

BASEDIR Private base directory. For example: \\server\Raduga\

 In this case user objects are stored under the following directory:

 \\server\Raduga\users\<user>\developments\<environment>\<entity>\...

CMSERVER Concurrent Manager Server (if there are 49ultiple CM servers, the first one)

CONTEXT_FILE Application Context File

CONTEXT_NAME Application Context Name

DBCREDENTIALS A string that can be used to connect to the database. Example:

 sqlplus ${DBCREDENTIALS}

DBINITSTR A string containing commands that will be executed after connecting to the

database

DBPORT Current database port

DBSERVER Database server (if there are multiple database servers, the first one)

DISCOSERVER Discoverer server

DEPENDAPP Y/N - defines if current entity depends on application

DEPENDLANG Y/N - defines if current entity depends on language

EBSPASSWORD EBS password for Discoverer administration

EBSUSER EBS user for Discoverer administration

ENTITY Current Entity

ENV Current Environment

ENV_FILE Current Environment configuration file

EULPASSWORD Discoverer EUL password

EULUSER Discoverer EUL user

EXTENSION Current object extension

FAILURE Current operation failure message

FILEEXTENSION Current local file extension

file://///server/Raduga/
file://///server/Raduga/users/%3cuser%3e/developments/%3cenvironment%3e/%3centity%3e/

50

FORMSSERVER Forms server (if there are multiple forms servers, the first one)

LANGUAGE Current application language

LICENSE Current Raduga user’s license number

LISTENER_NAME Database listener name

LOCAL_OBJECT Current Local file name

LOCALDIR Current Local directory

LOGIN Current Raduga login name

LOGIN_SC Current Raduga login name in lower case

MASK Current mask for server objects

NEW_OBJECT New object name (during rename)

NEW_OBJECT_HASH New object hash value

NEW_OBJECT_NOEXT New object name without extension

OBJECT Current object name

OBJECT_<N> Text from the N’th column of the right Raduga panel (starting from 1)

OBJECT_HASH Current object hash value

OBJECT_NOEXT Current object name without extension

OLD_OBJECT_HASH Old object hash value

PDB Pluggable database name

PROJECT Current Project name

REMOTEDIR Current Remote Directory

REPORTSSERVER Reports Server (if there are multiple reports servers, the first one)

REVISION Current object’s revision number

SC Current development project name

SERVER Current Server

SERVER _DOMAIN Current Server’s domain

STAGE Raduga Stage Directory

51

SUCCESS Current operation success message

SYSTEMPASSWORD SYSTEM password

TASK Current Task (FTP, Deploy or DataLoad)

TOP Current Application Top directory

TWO_TASK Oracle TWO_TASK value

USER Current OS user

WEBSERVER Web Server (if there are multiple web servers, the first one)

Appendix B – List of Raduga built-in steps

db.get_udump_dir Set UDUMP variable to the value of user_dump_dest database parameter

db.format_sql Break long SQL lines (more than 2499 characters) in current object definition

db.get_user_grants Create SQL statement for granting privileges for current object (current user has

 no SYSDBA role)

db.get_dba_grants Create SQL statement for granting privileges for current object (logged in as SYSDBA)

ebs.check_fnd_status Parse FNDLOAD logfile (defined in the $logfile variable) and set MESSAGE and STATUS

 variables if failure occurs

ebs.get_forms_url Set FORMS_URL variable according to the value taken from ICX_FORMS_LAUNCHER

 profile

 Forms URL contains also “lang”, “NLS_LANG”, “NLS_DATE_LANGUAGE”,

 “FORMS_USER_DATE_FORMAT” and “FORMS_USER_DATETIME_FORMAT” values set

 according to the current NLS and Raduga definitions

ebs.get_fnd_message Get FNDLOAD success message in the current application language

ebs.get_fnd_errors Get FNDLOAD error messages in the current application language

ebs.get_iso_lang Set ISO_LANG variable according to the application language

ebs.get_nls_lang Set NLS_LANG and UPLOAD_MODE variables according to the current application

 l anguage

 NLS_LANG is constructed using NLS values taken from the database and has a format

52

LANGUAGE_TERRITORY.CHARACTERSET

UPLOAD_MODE is used by FNDLOAD utility. It can be:

o UPLOAD_MODE=REPLACE if current application language is US (base language)

o UPLOAD_MODE=NLS if current application language is other than US (not base

language)

ebs.sync_wf_tables Synchronize workflow data in WF tables

ebs.update_who_fields Update LAST_UPDATE_DATE and OWNER fields during FNDLOAD operation

util.Failure Set failure status and build error messages

util.find_files List server files to standard output (including subdirectories)

util.list_files List server files to standard output (only current directory)

util.rcs_break_rcs Break RCS the lock of the current object

util.rcs_ci_rcs Check in the current object to the Raduga RCS repository

util.rcs_co_rcs Check out the current object from the Raduga RCS repository

util.rcs_def_rcs Define the Raduga RCS directory and owner for the current object

util.rcs_log_rcs Print RCS history for the current object to standard output

util.Success Set success status and build success messages

53

Appendix C – List of Raduga built-in customizable steps

ebs.apache_start Start Apache server (for E-Business Suite)

ebs.apache_stop Stop Apache server (for E-Business Suite)

ebs.apache_status Apache server status (for E-Business Suite)

ebs.apache_log View Apache server log file (for E-Business Suite)

ebs.app_start Start all application services (for E-Business Suite)

ebs.app_stop Stop all application services (for E-Business Suite)

ebs.cm_start Start concurrent manager (for E-Business Suite)

ebs.cm_stop Stop concurrent manager (for E-Business Suite)

ebs.cm_status Concurrent manager status (for E-Business Suite)

ebs.cm_log View internal concurrent manager log file (for E-Business Suite)

ebs.oacore_start Start framework agent (for E-Business Suite)

ebs.oacore_stop Stop framework agent (for E-Business Suite)

ebs.oacore_status Framework agent status (for E-Business Suite)

ebs.oacore_log View framework agent log file (for E-Business Suite)

ebs.forms_start Start forms server (for E-Business Suite)

ebs.forms_stop Stop forms server (for E-Business Suite)

ebs.forms_status Forms server status (for E-Business Suite)

ebs.forms_log View forms server log file (for E-Business Suite)

ebs.mailer_start Start Notification Mailer (for E-Business Suite)

ebs.mailer_stop Stop Notification Mailer (for E-Business Suite)

54

ebs.reports_start Start reports server (for E-Business Suite 11i)

ebs.reports_stop Stop reports server (for E-Business Suite 11i)

ebs.reports_status Reports server status (for E-Business Suite 11i)

ebs.reports_log View reports server log file (for E-Business Suite 11i)

ebs.compile_apps Compile APPS schema (for E-Business Suite)

ebs.compile_jsp Compile JSP (for E-Business Suite)

util.define_env Source environment file. If it does not exist – source .bash_profile or .profile.

util.rcs_break Break the RCS lock of the current object

util.rcs_ci Check in the current object to the Raduga RCS repository

util.rcs_co Check out the current object from the Raduga RCS repository

util.rcs_def Define the Raduga RCS directory and owner for the current object

util.rcs_log Print RCS history for the current object to standard output

util.Exit Exit Raduga script

Appendix D – List of Raduga built-in constants

Constant Default Value Description

db.UPDATE_DB_OBJECTS N Allow to drop or rename database objects

db.DROP_OBJECT_BEFORE_CREATE N If the value of this constant is ‘Y’, then for

database tables, users, tablespaces and

sequences the database object will be

dropped as a part of new object creation.

ebs.UPDATE_EBS_OBJECTS N Allow to drop or rename E-Business Suite

objects

55

ebs.UPDATE_WHO_FIELDS Y Allow to set owner and last update date

during the migration of E-Business Suite

objects

ebs.FORMS_USER_DATE_FORMAT DD%2FMM%2FRRRR FORMS_USER_DATE_FORMAT variable

ebs.FORMS_USER_DATETIME_FORMAT DD%2FMM%2FRRRR+HH24%3A

MI%3ASS

FORMS_USER_DATETIME_FORMAT variable

ebs.DISCO_ADMIN_RESPONSIBILITY System Administrator E-Business Suite responsibility that is used by

Discoverer for administrative tasks

ebs.JAVA_COMPILER javac Default java compiler for compiling java

source code

ebs.JAVA_DECOMPILER jad -p Default java decompiler for decompiling java

classes

util.UPDATE_FS_OBJECTS N Allow to drop or rename file system objects

util.CUSTOM_PREFIX xxx Default prefix for custom objects

util.VERSION_CONTROL_SYSTEM rcs Version control system used by Raduga

util.BROWSER iexplore.exe Default internet browser

util.ENCRYPT_OBJ_PROPS N If the value of this constant is ‘Y’ then the

content of the property file for Raduga

objects will be encrypted

util.PASSWORD_DAYS 0 User password expiration period in days. If 0

- the password will never expire

util.PROJ_LOCKED_BY_APPROVER N If the value of this constant is ‘Y’, the

development project will be locked for

changes if it is approved for deployment.

util.REQUIRE_REPDB_FOR_ENV A comma separated list of environments that

require Reporting database to be available.

Example: EBS.PROD, EBS.TST. If the reporting

database is not available, deployment

operations are not allowed for these

environments. Adding “ALL” to

util.REQUIRE_REPDB_FOR_ENV will enable

this feature for all environments.

util.DO_NOT_PING_ENV A comma separated list of environments that

56

that should not be checked By Raduga.

Example: EBS.PROD, EBS.TST. Usually Raduga

checks environment availability by

connecting to it every 3 sec. You can disable

this feature for specific environments.

Adding “ALL” to util.DO_NOT_PING_ENV will

disable this feature for all environments.

cloud.HCM_RESOURCES_PATH A path that must be concatenated to the

Cloud URL to obtain human resources. For

example: hcmRestApi/resources/11.13.18.05

cloud.HCM_HCIM_PATH A path that must be concatenated to the

Cloud URL to obtain human resources users.

For example: hcmRestApi/scim

PRIVATE_CONFIG_DIR User preferences base directory

PRIVATE_WORKING_DIR User objects base directory

PROJECTS_DIR Development projects base directory

RDG_ADMINISTRATOR_GRP Raduga administrators windows group name

RDG_DEVELOPER_GRP Raduga developers windows group name

RDG_IMPLEMENTER_GRP Raduga implementers windows group name

RDG_USER_GRP Raduga users windows group name

57

For Further Information
For any questions regarding this product, contact us at support@LazyDeploy.com, tel. +79185402272, or visit Raduga's
web site: http://www.LazyDeploy.com

mailto:support@LazyDeploy.com
http://www.lazydeploy.com/

